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Abstract Surfactants are organic compounds which
can be used in several applications. However, they can
contaminate world water resources causing detrimental
effects to human beings, aquatic life, and animals. This
paper investigates the adsorption kinetics, isotherms,
and thermodynamic properties for the removal of an
anionic surfactant, sodium dodecylbenzene sulfonate
(SDBS), using fly ash. Characteristics of fly ash such
as surface area and pore size analysis and the point of
zero charge (PZC) were determined. The effects of
parameters such as pH, surfactant concentration, and
temperature and the adsorption kinetics, isotherms, and
thermodynamic properties and adsorption mechanism
were determined. Fly ash is a mesoporous material
having surface area and pore size of 1.079 m2/g and
9.813 nm and PZC at pH 6.58. pH 2 and the temperature
25 °C were optimum for adsorbing SDBS onto fly ash.
The adsorption capacity and removal efficiency

increased by increasing the concentration of SDBS from
100 to 2000 mg/L, indicating that the increase of sur-
factant concentration could not saturate the surface of
fly ash. The pseudo-second-order and the Langmuir
isotherm models showed best fit to the adsorption data
and the thermodynamic properties described adsorption
as an exothermic, barrierless, non-spontaneous, and
entropy-reducing reaction which is more feasible at a
lower temperature of 25 °C. This indicated that the
adsorption occurs by both physisorption and chemisorp-
tionwithmonolayer coverage of SDBS on the surface of
fly ash. SDBS surfactant adsorbed onto fly ash mainly
through electrostatic interactions between oppositely
charged SDBS and fly ash.

Keywords Surfactant .Wastewater . Adsorption .
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1 Introduction

The world’s water resources are contaminated by the
release of many pollutants into water sources such as
rivers, streams, and oceans. Surfactants are the emerging
water pollutants regularly observed in wastewater. They
are hazardous compounds which can have negative
effects on the environment (eutrophication) as well as
on humans, animals, and fish (cancer, endocrine disrup-
tion, dermatitis, eye irritation, and pathological, physio-
logical, and biological effects) (Kimerle and Swisher
1977; Önder et al. 2007; Pal et al. 2013; Pereira et al.
2015). The increased use of surfactants and disposal of
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untreated wastewater containing surfactants into water
resources represent an environmental threat to the
world.

Surfactants are chemical compounds which possess
both hydrophobic and hydrophilic components. They
are categorized into three classes such as ionic (anionic
and cationic), nonionic, and amphoteric on the basis of
charge on the head group. They are used in detergents,
emulsion stabilization, foaming, wetting, pharmaceuti-
cal formulations, mineral separations, and many other
purposes (Bautista-Toledo et al. 2014). Worldwide, 12
MT of surfactants is used per year in domestic and
industrial applications (Edser 2008; Beltrán-Heredia
et al. 2012). The consumption of anionic surfactants is
large worldwide as they are simple and economical to
manufacture while providing good foaming and wash-
ing properties (Zanoletti et al. 2017). The surfactant
concentration ranges from 1 to 10 mg/L in domestic
wastewater and approximately 300 mg/L from surfac-
tant manufacturing industries wastewater (Zhang et al.
1999).

Methods such as coagulation (Aboulhassan et al.
2006), chemical and electrochemical oxidation (Ikehata
and El-Din 2004; Panizza et al. 2005), microbial treat-
ment (Pérez-Carrera et al. 2010; Tezel et al. 2012), ion
exchange, adsorption (Gonzalez-Garcia et al. 2002;
Schouten et al. 2007; Sineva et al. 2007), foam separa-
tion (Boonyasuwat et al. 2003), and membrane separa-
tion (Kowalska 2011) can be used to remove surfactants
from wastewater. The use of most of these methods is
limited by the effectiveness, economic feasibility, and
environmental friendliness. Adsorption is the most com-
monly used method for surfactant removal due to its
effectiveness, cost, and environmental friendliness. A
variety of adsorbents such as multi-walled carbon nano-
tubes (MWCNTs) (Ncibi et al. 2015), silica nanoparti-
cles functionalized with amine groups (Kim, Kim et al.
2019), polymer resin (Gönder et al. 2010), fly ash/TiO2

composite (Visa and Duta 2013), amino cross-linked
chitosan microspheres (ACCMs) (Zhang et al. 2017),
and pine tree cone activated carbon (Valizadeh et al.
2016) have been introduced for anionic surfactant re-
moval from wastewater. Fly ash showed 96% removal
of an anionic surfactant, sodium dodecylsulfate (SDS),
and an adsorption capacity of 0.96mg/g was achieved at
a fly ash dose of 100 g/L (Zanoletti et al. 2017).

Adsorption kinetics describes rates of reactions and
phenomena of adsorption. The pseudo-first-order, pseu-
do-second-order, and intraparticle diffusion models are

commonly used to model the adsorption kinetics of
surfactants. The pseudo-first-order model described the
kinetics of removing the anionic surfactant sodium
dodecylbenzene sulfonate (SDBS) using pine tree cone
activated carbon and commercial activated carbon
(Bautista-Toledo et al. 2014). The intraparticle diffusion
and pseudo-second-order models described the kinetics
of SDBS, cetyltrimethylammonium bromide (CTAB),
and Triton X-100 (TX-100) surfactants onto MWCNTs
(Ncibi et al. 2015).

Adsorption isotherms are used to determine the equi-
librium of an adsorption reaction (Siyal et al. 2020;
Zulfiqar et al. 2020). The Langmuir, Freundlich, and
Temkin models are commonly used to model the ad-
sorption of surfactants. The Langmuir model described
the removal of anionic and cationic surfactants such as
sodium lauryl ether sulfate (SLES) and CTAB using
polymer resin VPOC 1064 MD PH and indicated the
process as a monolayer (Gönder et al. 2010). The
Freundlich model described the removal of the nonionic
eicosaneoxyethylene hexadecyl ether (POE type) sur-
factants and the anionic SDS using Pittsburgh activated
carbon in both single and multi-solute modes and indi-
cated the adsorption as multilayer (Asakawa and Ogino
1986). Thermodynamic properties such as activation
energy (Ea), Gibbs free energy (ΔG°), enthalpy (ΔH°),
and entropy (ΔS°) are determined to understand the
nature of adsorption. The changes in the Gibbs free
energy of removal of n-dodecyl-β-D-maltoside (DM)
and sucrose capric acid (SMD) (disaccharide-based
surfactants) and sucrose lauric acid (SML) described
that the decrease of temperature from 313 to 293 K
decreased the surfactants’ tendency of adsorption and
the adsorption tendency of mono- and disaccharide sug-
ar surfactants depended on the structure of the polar part
of surfactants while temperature did not affect adsorp-
tion (Krawczyk 2018). However, the adsorption kinet-
ics, isotherms, and thermodynamic properties of adsorp-
tion of the anionic surfactant SDBS onto the fly ash have
never been studied.

This paper reports adsorption kinetics, isotherms, and
thermodynamic properties of removal of the anionic
surfactant SDBS using the fly ash adsorbent. Initially,
the characteristics of fly ash such as surface area, pore
size, pore volume, and point of zero charge (PZC) are
investigated. After the characterization of the coal fly
ash, the effects of adsorption parameters such as pH,
initial SDBS concentration, and temperature are inves-
tigated. Finally, the adsorption data was modeled using
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kinetics and isotherm models and thermodynamic prop-
erty equations. The adsorption mechanism is also
described.

2 Materials and Methods

Materials Fly ash obtained from a local thermal power
station was used in this study; its chemical composition
is shown in Table 1. More characteristics of the fly ash
such as functional groups analysis, microstructural anal-
ysis, and phase analysis are reported elsewhere (Siyal
et al. 2016). Analytical reagent (AR) grade sodium
dodecylbenzene sulfonate (SDBS, C18H29NaO3S) sur-
factant, nitric acid (HNO3), and sodium hydroxide
(NaOH) were purchased from Sigma Aldrich, Malaysia.

2.1 Methods

2.1.1 Characterization of Fly Ash

Surface Area and Pore Size Analysis of Fly Ash The
surface area, average pore size, and total pore volume of
fly ash were determined using a Micrometrics ASAP
2020 BET instrument through N2 gas adsorption-
desorption isotherms. The Brunauer-Emmett-Teller
(BET) equation was used for determining the surface
area.

Point of Zero Charge of Fly Ash Three different weight
percent (wt.%) concentrations of fly ash (10, 20, and 30)
were prepared in deionized water. The PZC was deter-
mined through titration. A pH meter (Eutech Instru-
ments) was used for recording the charge density of
the solutions. 0.01 M HNO3 and 0.01 M NaOH solu-
tions were used for adjusting the charge on the fly ash
adsorbent.

2.1.2 Adsorption of SDBS onto Fly Ash

The adsorption of SDBS was conducted on a model
wastewater prepared in the laboratory. SDBS model
solutions ranging from 50 to 1000 mg/L were prepared
by diluting 1000 mg/L SDBS stock solution with dis-
tilled water. The surfactant solution pH was adjusted to
the required pH using 0.01MNaOH and 0.01MHNO3.
A total of 200 mL of the model wastewater solution was
treated with 10 g/L of adsorbent in a conical flask. The

solutions were agitated at 200 rpm and room tempera-
ture 25 °C for 300 min (5 h) using an orbital shaker
(SSM1, mini orbital shaker, Stuart, UK). Samples were
taken and filtered (syringe filters 0.22 μm, Thermo
Scientific) at time intervals of 0, 5, 15, 30, 60, 120,
180, 240, and 300 min. The supernatant was analyzed
using a Shimadzu UV-1800 spectrophotometer set at a
wavelength of 223 nm. A calibration curve prepared
using SDBS concentrations in the range of 5 to
100 mg/L was used to calculate the SDBS concentration
in the treated solutions. The absorbance of SDBS solu-
tions above 100 mg/L was determined by diluting the
samples up to calibration curve range before analysis on
the spectrophotometer. The adsorption capacity and re-
moval efficiency of fly ash adsorbent for SDBS surfac-
tant were calculated using Eqs. (1) and (2), respectively.

qt ¼
V s Ci−C fð Þ

m
ð1Þ

Removal Efficiency %ð Þ ¼ Ci−C fð Þ
Ci

� 100 ð2Þ

where

qt Adsorption capacity at time t (mg/g),
Vs Solution volume (L),
Ci Initial surfactant concentration (mg/L),
Cf Final surfactant concentration (mg/L),
m Weight of adsorbent (g).

Effect of Binding Parameters The effects of pH, surfac-
tant concentration, and temperature were determined by
single parameter variation. The pH was varied from 2 to
10 (2, 4, 6, 8, and 10), SDBS concentration was varied
from 100 to 2000 mg/L (100, 200, 300, 400, 500, 750,
1000, 1250, 1500, 1750, and 2000 mg/L), and temper-
ature was varied from 25 to 65 °C (25, 35, 45, 55, and
65 °C). The parameter range was chosen from previous
studies and trial runs (Gupta et al. 2003; Taffarel and
Rubio 2010; Zanoletti et al. 2017).

Adsorption Kinetics Adsorption kinetics was used to
determine the rate and mechanism of adsorption using
kinetics models of the pseudo-first-order, pseudo-sec-
ond-order, and theWeber intraparticle diffusion models.
The adsorption data was fitted linearly to kinetics
models using Origin software (Origin Pro 9.0,
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OriginLab Corporation). The kinetics models are given
in Table 2.

Adsorption Isotherm Adsorption isotherms are used to
determine the equilibrium of adsorption and adsorbent-
adsorbate interactions (Shamsuddin et al. 2014). The
adsorption data was linearly fitted to Langmuir,
Freundlich, and Temkin isotherm models shown in
Table 2 using Origin Pro software.

Thermodynamic Properties The distribution coefficient
(Kd) is the amount of surfactant adsorbed onto the
adsorbent in relation to the quantity of surfactant re-
maining in solution at equilibrium and it was determined
using Eq. (3). The following equations were used to
determine the thermodynamic properties of Ea, ΔH°,
and ΔS° (Eq. 4) and ΔG° (Eq. 5):

Kd ¼ qe
Ce

ð3Þ

logKd ¼ ΔS°
2:303 R

−
ΔH°

2:303 RT
ð4Þ

ΔG° ¼ ΔH°−TΔS° ð5Þ

3 Results and Discussion

3.1 Characterization of Fly Ash Adsorbent

3.1.1 Surface Area and Pore Size Analysis

The surface characteristic results of fly ash adsorbent
are shown in Table 3. Surface area, average pore size,
and total pore volume of fly ash adsorbent are
1.079 m2/g, 9.813 nm, and 0.0026 cm3/g respective-
ly. The surface area of fly ash is very low compared
with that of activated carbon (1201 m2/g), multi-

walled carbon nanotubes (233 m2/g), and fly ash-
TiO2 composite (37.97 m2/g) which have been used
for the removal of anionic surfactants (Visa and Duta
2013; Ncibi et al. 2015; Valizadeh et al. 2016). The
surface area of fly ash is 21% lower than of
unexpanded perlite (1.22 m2/g) which was used to
adsorb the cationic CTAB surfactant (Alkan et al.
2005). The pore size results show that the fly ash is
a mesoporous material. The microporous materials
cannot capture the long-chain surfactant molecules
at the typical size of < 2 μm. Macroporous and meso-
porous materials are more feasible for absorbing
large molecules due to their pore size which can
easily capture larger sized surfactant molecules (De
Gisi 2016). A summary of pore size analysis results
along with its comparison to MWCNTs and pine tree
cone activated carbon adsorbents used for SDBS
removal is given in Table 3. Although the surface
area of fly ash is low as compared with that of other
adsorbents used for the removal of SDBS surfactant,
the performance of fly ash for the removal of heavy
metals, dyes, and anionic surfactant SDS from waste-
water shows that fly ash can also be tested for the
removal of the anionic surfactant SDBS (Wang et al.
2005, 2008; Zanoletti et al. 2017).

3.1.2 Point of Zero Charge Analysis of Fly Ash

The PZC of fly ash occurs at pH 6.58. This indicates that
fly ash will be positively charged below pH 6.58 and
negatively charged above pH 6.58. The hydrogen ion
(H+) concentration increases below pH 6.58 and hy-
droxide ion (OH−) concentration increases above
pH 6.58. The PZC results show that the pH in the acidic
range will be more favorable for the anionic surfactant
SDBS removal due to the higher affinity between the
oppositely charged adsorbent and adsorbate. pH in the
basic range will result in lower adsorption of the SDBS
surfactant due to repulsion between the similarly
charged components.

Table 1 Oxide composition of fly ash (Siyal et al. 2016)

Oxide

SiO2 Al2O3 CaO Fe2O3 MgO K2O SO3 Na2O TiO2 Others

Composition (wt.%) 43.25 20.58 11.11 12.48 3.75 1.98 1.45 0.95 0.88 3.57
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Table 2 Equilibrium and linearized kinetics and isotherm equations

Models Equilibrium Linearized Ref.

Pseudo-first-order
qt ¼ qe 1−e−k1 t

� � ln(qe − qt) = ln qe − k1t (Lagergren 1898)

Pseudo-second-order
qt ¼ q2ek2 t

1þqeð k2tÞ t=qt ¼ 1=k2q2e þ t=qe
(Ho and McKay 1999)

Intraparticle diffusion
qt ¼ k intt

1=2

qt = kidt
0.5 +C (Weber and Morris 1963)

Langmuir
Qe ¼ qmbCe

1þbCe

Ce qe ¼ 1
qmb

þ Ce qm
(Langmuir 1918)

Freundlich
Qe ¼ K fCn

e logqe ¼ Log K F þ 1
n logCe

(Freundlich 1907)

Temkin
qe ¼ RT

b ln KTð CeÞ
Qe = B Ln KT +B Ln Ce (Temkin 1941)

Where

qt - Mass of surfactant adsorbed at time t (mg/g),

qe - Mass of surfactant adsorbed at equilibrium (mg/g),

k1 - Pseudo-first-order rate constant (1/min),

k2 - Pseudo-second-order rate constant (g/mg min),

k2qe
2 - Initial sorption rate also represented by h,

C - Intercept,

kid - Intraparticle diffusion rate constant (mg/g day0.5 ),

Ce - Equilibrium concentration of surfactant (mg/L),

qm - Maximum adsorption at monolayer coverage (mg/g),

b - Adsorption equilibrium constant related to energy of adsorption (L/mg),

KF - Freundlich parameter [(mg g−1 ) * (L/mg)(1−n/n) ],

n - Freundlich parameter related to surface heterogeneity,

B - RT/bT,

bT - Temkin isotherm constant (J/mol),

KT - Model constant (L/g),

B - Constant related to heat of sorption,

R - Gas constant (R = 8.314 J/mol. K),

T - Temperature (K).

Table 3 Characteristics of FA and other adsorbents for SDBS removal

Adsorbent Characteristics Reference

Surface area (m2/g) Pore size (nm) Pore volume (cm3/g)

Fly ash 1.079 9.813 0.0026 (Siyal et al. 2019)

Multi-walled carbon nanotubes (MWCNTs) 233 1–49 0.423 (Ncibi et al. 2015)

Activated carbon from cones of pine trees 1201 2.58 0.775 (Valizadeh et al. 2016)
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3.2 Adsorption of SDBS Surfactant Using Fly Ash
Adsorbent

The effects of pH, SDBS concentration, and temper-
ature on the adsorption of SDBS onto fly ash were
investigated. Initially, an SDBS concentration of
100 mg/L was used for determining the effect of
other parameters. A total of 10 g/L of fly ash and a
contact time of 300 min (5 h) were chosen to be used
in this study based on information from a previous
study (Siyal et al. 2018).

3.2.1 Effect of pH

The effect of varying pH on the removal of SDBS
using the fly ash is shown in Fig. 1a. The increase of
the pH from 2 to 10 reduced the adsorption capacity
from 6.922 to 2.916 mg/g and the removal efficiency
from 69.22 to 29.17%. This is most likely due to the

change in the affinity of fly ash for SDBS. The pH 2
gave highest adsorption capacity and removal effi-
ciency. Fly ash is positively charged at pH 2 (pH <
PZC); this could help it adsorb a higher quantity of
negatively charged SDBS surfactant due to attraction
between the oppositely charged adsorbent and adsor-
bate. The hydrogen ion (H+) concentration increases
at pH 2 which react with sulfonate groups (SO3

−) of
SDBS causing higher adsorption of SDBS surfactant
onto the fly ash. Increasing the pH from 2 to 10 shifts
the charge on the fly ash from positively charged to
negatively charged, therefore increasing the repul-
sion between fly ash and SDBS. This results in de-
creasing adsorption capacity and removal efficiency.
The data confirmed that pH 2 is optimum for the
SDBS adsorption onto fly ash. pH 2 as optimum
was consistent with previous research on SDBS re-
moval using cross-linked chitosan films and the
geopolymer (Kahya et al. 2018; Siyal et al. 2019).

Fig. 1 Effect of a pH, b SDBS concentration, and c temperature on adsorption of SDBS
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3.2.2 Effect of SDBS Concentration

The effect of varying the starting concentration of SDBS
on the adsorption of SDBS onto fly ash is shown in Fig.
1b. The increase of SDBS concentration from 100 to
2000 mg/L increased the adsorption from 6.259 to
168.821 mg/g and removal efficiency from 62.59 to
84.41% due to a higher amount of SDBS molecules in
solution. These molecules occupy the available active
bonding sites on fly ash which resulted in a higher
adsorption capacity and removal efficiency (Parhizgar
et al. 2017). At the highest concentration of SDBS tested
(2000 mg/L), the binding did not reach saturation. This
indicated that there were still binding sites available on
the fly ash adsorbent. The adsorption capacity increases
linearly as SDBS concentration is increased from 100 to
2000 mg/L. Removal efficiency increases from 100 to
750 mg/L and then decreases from 750 to 1250 mg/L.
Further increasing SDBS concentration above 1250 mg/

L increases removal efficiency. This irregular behavior
in the variation of removal efficiency is due to error in
the experimental data. The adsorption capacity and re-
moval efficiency are directly related, an increase in one
parameter increases the other and vice versa. This type
of behavior of increase of adsorption capacity and re-
moval efficiency with increasing surfactant concentra-
tion up to 2000 mg/L has rarely been observed in the
literature.

3.2.3 Effect of Temperature

The effect of varying the temperature on SDBS removal
using fly ash is shown in Fig. 1c. The increase of
temperature from 25 to 65 °C decreased the adsorption
capacity from 39.752 to 34.435 mg/g and removal effi-
ciency from 79.5 to 68.9%. This could be due to a
decrease in the viscosity of the surfactant solution. The
decrease of viscosity at higher temperature weakens the

Fig. 2 Kinetics of the SDBS adsorption onto fly ash using a pseudo-first-order, b pseudo-second-order, and c intraparticle models
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adsorptive forces between fly ash and SDBS leading to
decreased SDBS adsorption. These results show that the
adsorption forces between SDBS and fly ash are weak
and could indicate that exothermic physisorption is a
possible mechanism for SDBS surfactant adsorption
onto fly ash adsorbent (Alkan et al. 2005). It shows that
the temperature does not support the adsorption of
SDBS onto fly ash, rather it supports the desorption of
SDBS (Juang et al. 1997). The results indicate that
25 °C is the optimum temperature for adsorbing SDBS
onto fly ash as it results in the highest adsorption of
surfactant.

3.3 Adsorption Kinetics

The kinetics results obtained by linearly fitting the ad-
sorption data to the pseudo-first-order, pseudo-second-
order, and intraparticle diffusion models are shown in
Fig. 2a–c. The values of correlation coefficient (R2), rate
constants, and adsorption capacities are given in
Table 4.

The correlation coefficient (R2) of the pseudo-first-
order (Fig. 2a) and intraparticle diffusion (Fig.2c)
models ranged between 0.38 and 0.89 and between
0.72 and 0.97 respectively. This indicated that these
kinetic models did not fit the adsorption data well. The

pseudo-second-order kinetics model had a R2 of 0.99
(Fig. 2b) for all concentrations tested which indicated
that this model fits the adsorption data the best. Further-
more, the predicted adsorption capacities at the initial
concentrations of 50, 100, 200, 300, 400, and 500 mg/L
obtained using the pseudo-second-order model were
similar to the experimentally determined values. From
Table 4, the values of rate constant for the pseudo-
second-order model ranged between 0.014 and 0.063
indicating a slow adsorption of SDBS onto the fly ash.
This was also supported from the equilibrium time of
300 min. The results show that the SDBS removal using
fly ash adsorbent follows a pseudo-second-order model
and the adsorption is chemisorption. These results are
consistent with previous studies which have been re-
ported on SDBS removal using surface-functionalized
mesoporous silica nanoparticles and geopolymer (Kim,
Kim et al. 2019, Siyal et al. 2019).

3.4 Adsorption Isotherm

Adsorption isotherms of SDBS onto fly ash are shown
in Fig. 3a–c. The Langmuir model fits the adsorption
data better than the Freundlich and Temkin models and
had a correlation coefficient (R2) of 0.98. The predicted
adsorption capacity obtained using this model was

Table 4 Adsorption kinetics of SDBS onto fly ash

Model SDBS conc (mg/L) R2 Qe, cal. (mg/g) Qe, exp. (mg/g) Model constant

Pseudo-first-order model 50 0.442 2.009 3.550 0.001 (1/min)
100 0.440 2.004 6.259 0.001

200 0.895 5.345 13.556 0.003

300 0.833 12.735 22.475 0.005

400 0.386 6.456 31.001 0.002

500 0.411 9.549 39.524 0.004

Pseudo-second-order model 50 0.990 3.584 3.550 0.017 (g/mg min)
100 0.998 6.369 6.259 0.032

200 0.997 13.333 13.556 0.018

300 0.999 22.727 22.475 0.014

400 0.999 31.25 31.001 0.034

500 0.999 39.840 39.524 0.063

Intraparticle diffusion model 50 0.966 – – 0.192 mg/g day0.5

100 0.962 0.111

200 0.905 0.117

300 0.976 0.226

400 0.731 0.212

500 0.727 0.271
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38.461 mg/g, which was only 2.7% lower than the
experimental adsorption capacity of 39.524 mg/g. The
Langmuir rate constant was 0.0015 which indicated the
adsorption of SDBS as a slow reaction. It was consistent

with 300 min (5 h) of the required contact time (Siyal
et al. 2018).

The Freundlich model had a R2 value of 0.926,
indicating it fits the data better than the Temkin model
which had a R2 of 0.740. The Langmuir isotherm model
described the adsorption of SDBS onto fly ash adsor-
bent as a reaction which is dominated by homogenous
distribution of adsorption sites and a monolayer surface
coverage, whereas the Freundlich isotherm model sug-
gests that the adsorption occurs due to heterogeneous
distribution of adsorption sites with multilayer surface
coverage.

However, the Langmuir model fits the experimental
data better than the Freundlich model. This indicates
that the adsorption of SDBS onto fly ash is a process
which occurs due to attraction of the SDBS towards
homogenously distributed adsorption sites on the fly
ash resulting in the formation of a monolayer of SDBS
onto the fly ash. The adsorption isotherm results

Fig. 3 Adsorption isotherms of SDBS onto fly ash using a Langmuir, b Freundlich, and c Temkin models

Fig. 4 Thermodynamic plot of adsorption of SDBS onto fly ash
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obtained in this study are consistent with those in other
reported studies on the adsorption of SDBS onto amino
cross-linked chitosan microspheres (ACCMs) and
cross-linked chitosan films (Zhang et al. 2017; Kahya
et al. 2018).

3.5 Thermodynamic Properties

The thermodynamic plot and the results of thermody-
namic properties are shown in Fig. 4 and Table 5. The
adsorption data shows the best fit with R2 of 0.984. The

negative activation energy shows that the adsorption of
SDBS surfactant onto fly ash does not need activation
energy to overcome the barrier. It is a barrierless reac-
tion. The negative enthalpy indicates the adsorption as
an exothermic reaction that does not need extra energy
for its activation. The enthalpy result (ΔH < 0) indicates
that SDBS surfactant is adsorbed through physisorption
onto the fly ash adsorbent. Chemisorption is mostly
observed at enthalpy above 21 kJ/mol (Liu et al.
2016). The enthalpy results are consistent with the ad-
sorption of SDBS surfactant onto amino cross-linked
chitosan microspheres (ACCMs) (Zhang et al. 2017).

The negative entropy value indicates that the disorder
of the system at the interface of solid-liquid has reduced.
The positive values of Gibbs free energy observed here
have rarely been observed in the literature. The positive
values of Gibbs free energy indicate the adsorption of
SDBS onto fly ash as a non-spontaneous reaction. Non-
spontaneous reactions are also called endergonic reac-
tions. Energy is absorbed in such reactions and the total
amount of energy required to start such reactions is
higher than what is released or generated from the
reaction. The Gibbs free energy increased with the in-
crease of temperature from 298.15 to 338.15 K which
indicated that the adsorption is more favorable at
298.15 K (Zhang et al. 2017).

3.6 Adsorption Mechanism

The SDBS adsorption onto the fly ash adsorbent
followed the pseudo-second-order kinetics model
and the Langmuir isotherm model which showed
that the adsorption occurred by chemisorption with
formation of a monolayer of SDBS onto fly ash. The
enthalpy (ΔH < 0) and higher adsorption at a lower
temperature of 25 °C indicated the adsorption of
SDBS onto fly ash as a physisorption process.
Therefore, it could be suggested that SDBS adsorp-
tion onto fly ash occurs by both physisorption and
chemisorption with monolayer surface coverage.

Table 5 Thermodynamic properties of adsorption of SDBS onto fly ash

Thermodynamic property Value

Ea (kJ/mol) − 5.199
ΔH (kJ/mol) − 11.975
ΔS (kJ/mol) − 47.791
ΔG (kJ/mol) 14.236 14.714 15.192 15.670 16.148

SDBS surfactant

Fly ash

pH < PZC

pH = PZC

pH > PZC

Fig. 5 Adsorption mechanism of SDBS onto fly ash
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The major portion of adsorption occurs by
physisorption, while chemisorption is also involved
in the adsorption of SDBS surfactant onto the fly
ash adsorbent. This type of mechanism has also
been observed in the removal of sulfate onto
barium-modified blast-furnace slag geopolymer
(Runtti et al. 2016).

The electrostatic charges play a key role in SDBS
adsorption onto fly ash. Fly ash is positively charged at
pH below 6.58 and negatively charged at pH above
6.58. Fly ash becomes highly positive at pH 2 and the
SDBS is negatively charged. The opposite charges in-
crease the affinity of SDBS surfactant towards fly ash
which results in SDBS adsorption onto fly ash as shown
in Fig. 5. At pH 2, the sulfonate groups (SO3

−) of the
SDBS surfactant react with H+ ions which results in the
SDBS surfactant adsorption onto the fly ash. Other
forces such as van der Waal’s forces of attraction, hy-
drogen bonding, and hydrophobic bonding between
SDBS and fly ash adsorbent may also play a role in
the adsorption.

4 Conclusions

Fly ash can effectively remove the anionic surfactant
SDBS from aqueous solution. The optimum condi-
tions for the adsorption of SDBS onto fly ash iden-
tified in this study were pH 2 and a temperature of
25 °C. Experimental adsorption data of SDBS onto
fly ash fit the pseudo-second-order and Langmuir
isotherm models best. The adsorption is an exother-
mic, barrierless, non-spontaneous, and entropy-
reducing reaction which is more promising at a
temperature of 25 °C. The enthalpy of − 11.975 kJ/
mol was obtained. The adsorption of SDBS surfac-
tant onto fly ash occurred by both physisorption and
chemisorption with the formation of a monolayer of
SDBS on the surface of the fly ash adsorbent. The
adsorption occurred by the electrostatic interactions
between positively charged fly ash and negatively
charged sulfonate group of the SDBS surfactant,
while other forces such as hydrogen bonding, hy-
drophobic bonding, ion exchange, and van der
Waal’s forces also played a role in the adsorption.
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