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ABSTRACT
In this study, Newlands coal char and spirulina algae char were prepared separately in a fixed
bed reactor with a pyrolysis temperature of 1000 �C. The isothermal CO2 co-gasification
experiment was done using a thermogravimetric analyzer in the temperature range of 800–
1000 �C. The volumetric model (VM), the shrinking core model (SCM), the random pore model
(RPM) and the modified random pore model (MRPM) were applied to describe the gasification
kinetics of the samples. The results show that synergetic effects were observed for all ratios
while the 5:5 blend demonstrates the best performance which may be attributed to the high
content of potassium included in the algae char which in turn promotes the catalytic effect.
Among the above-mentioned models, RPM was found to be predicting the conversion profile
best among all tested models except for the algae sample which failed to fit the data by RPM
and hence MRPM was applied for the algae sample only. RPM and MRPM were adopted to
calculate the kinetics parameters. The activation energy and the pre-exponential factor were
determined using the Arrhenius equation. The activation energy for all chars was found to be in
the range of 100–200 kJ/mol.
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Introduction

Coal is an abundant and low cost fuel. However, green-
house emissions are major concerns of coal direct fir-
ing. Shifting the focus on more environmentally
friendly thermochemical technologies like gasification
enables clean use of the abundant reserves of coal and
helps to reduce the coal carbon footprint.

Coal gasification has been widely investigated.
Results approved that high-rank coal is preferred for
gasification, since lower energy than low-rank coal is
needed to drive out the moisture and volatile matters
[1]. However, high-rank coal has a lower reactivity than
low-rank coal [2]. Although coal gasification is usually
conducted in an air, steam or air–steam mixtures envi-
ronment, it can also be done with CO2. Despite higher
carbon monoxide production when CO2 is introduced
as a gasification agent, slow kinetics is the major draw-
back of CO2 gasification [3]. The char–CO2 reaction is
often used to study different char reactivities since it is
easy to measure [4]. Also, the char gasification step rep-
resents the reaction limiting phenomena in the thermo-
chemical conversion process of biofuel [5]. However, in
industrial applications, one of the common techniques
used to enhance the gasification reactivity at a lower
temperature is catalyst loading, taking into consider-
ation the cost, the availability and the efficiency of the
catalyst [6].

Mixtures of coal and biomass can be considered to
be a potential fuel base for gasification and offer the
advantage of a reduction in CO2 emissions [7], and a
net reduction of the CO2 emission if CO2 capture is
incorporated as part of the process [8]. Furthermore,
co-gasification technology can help to overcome
obstacles that appear when individual coal or biomass
is gasified and has the potential to create collaborative
effects: (1) Thermal co-processing of coal with biomass
may cause some synergetic interactions to take place
leading to significant variation in the thermal reactivity
of the fuels [9]; (2) The efficiency of coal gasification
can be enhanced through the catalytic effect that
comes from higher amounts of alkali and alkaline earth
metals in biomass [10]; (3) Utilization of biomass with
coal can help to overcome the limited availability of
biomass due to its seasonal nature and so a stable
supply of gasification materials can be guaranteed [7];
(4) The elevated co-gasification temperature assists to
reduce tar formation from biomass, and helps to
enhance the energy balance of coal gasification
with lower temperature compared to coal-only gasifi-
cation [11].

Land-based biomass, like sawdust, rice straw and
cedar wood, have been widely investigated with coal
co-gasification. Biofuel production from algae is
expected to play an important role in securing energy
supply in the next decade [12]. Algae is considered a

CONTACT Nasim M. N. Qadi qadi.n.aa@m.titech.ac.jp

© 2016 Informa UK Limited, trading as Taylor & Francis Group

BIOFUELS, 2016
http://dx.doi.org/10.1080/17597269.2016.1224292

mailto:qadi.n.aa@m.titech.ac.jp
http://dx.doi.org/10.1080/17597269.2016.1224292
http://www.tandfonline.com


cost-competitive biofuel for the following reasons:
faster growth, higher yield per area and higher CO2

capture and photosynthesis [13]. Moreover, algae has
high ash content which contains larger amounts of
alkali and alkaline earth metals than most terrestrial
biomass, thus better performance can be expected
[14]. Drying the algae is the main technical drawback
of algae utilization since it is a high energy consuming
process [15]. However, various energy-efficient thermal
drying technologies have been developed, including
conventional heat recovery-based technologies [16].
Incorporation of a heat recovery process will help
to mitigate the energy penalty of algae drying, and
the drying effect becomes less influential when a
limited amount of algae is used in the co-gasification
process.

Many researchers have investigated the interac-
tion behavior between coal and biomass during co-
gasification process. Xu et al. [17] investigated co-gasi-
fication of three different coal rank samples with three
different land-based biomasses, and reported a signifi-
cant interaction, where a ratio of 1:4 of sawdust and
lignite coal, respectively, showed the best synergetic
effect. Jeong et al. [7] examined the co-gasification of
the blended char of coal–biomass with CO2, and they
found that the reactive synergy of the char is increased
with increasing the biomass amount in the blend. Sev-
eral gasification studies have been done on algae indi-
vidually. Sanchez-Silva et al. [18] studied the steam
gasification of Nannochloropsis gaditana microalgae by
means of TGA-MS and found that hydrogen produc-
tion is improved by steam gasification. Hognon et al.
[19] compared the reactivity of steam gasification for
microalgae and lignocellulosic biomass chars by means
of TGA and reported that the inorganic contents of all
samples dominate the reactivity profiles. The available
studies about co-gasification of microalgae with other
fuels are very scarce. Kaewpanha et al. [20] studied
steam co-gasification of brown seaweed and land-
based biomasses, and they found that higher gas
yield was obtained when higher seaweed amounts
than land-based biomass amounts were used
because of higher alkali and alkaline species. Kirtania
et al. [21] studied the effects of different pyrolysis
conditions and heating rates on the CO2 gasifica-
tion kinetics of algal and woody char, and found
that the activation energy is highly dependent on
the biomass and pyrolysis conditions, and the
reactivity varies significantly with the pyrolysis
conditions of the chars. Zhu et al. [22] studied the
co-gasification of Australian brown coal with algae
in a fluidized bed reactor, and found that more
syngas is produced and agglomeration problems
appear when a high ash content algae specie is
used. Alghurabie et al. [23] investigated the fluid-
ized bed gasification of Kingston coal with 10 wt%
of marine microalgae in a spouted bed reactor,

and they found the high salt content in the algae
leads to operational problems such as agglomeration
and fouling.

Although the thermogravimetric analysis of the co-
combustion kinetics of the algae–coal blend has been
reported by Tahmasebi et al. [24] and the co-pyrolysis
kinetics of the algae–coal blend has been studied by
Kirtania et al. [25], a thermogravimetric study of algae–
coal blend co-gasification is missing from the literature.

In light of the unique properties of microalgae,
especially the high ash content, this research targets to
clarify the feasibility of co-processing of algae with coal
in terms of: (1) The occurrence of inhibiting or catalytic
effects when microalgae is co-gasified with coal; and
(2) To understand the reaction kinetics.

Method

Samples

Spirulina algae (ALG) cultivated in a fresh water pond
was supplied by Indonesia Islamic University. Newlands
coal (NC) was imported from Australia by Central
Research Institute of Electrical Power Industry (CRIEPI)
in Japan. The proximate analysis experiment was per-
formed for around 10 mg of each sample as follows:
(1) before start heating up and under N2 flow of
150 mL/min, hold for 10 min; (2) heat from room tem-
perature to 110 �C at a temperature ramp rate of 20
�C/min, hold for 7 min; (3) heat from 110 to 900 �C at a
ramp of 25 �C/min, hold for 5 min; (4) switch the gas
from N2 to air with the same flow, hold until no mass
change is detected. Ash analysis was determined using
a S2 Ranger energy dispersive X-ray fluorescence spec-
trometer (Bruker AXS, Germany).The proximate and
ash analyses of these samples is given in Table 1.

Char preparation

Coal and algae samples were kept in an oven at a tem-
perature of 105 �C for 24 h. Figure 1(a) and (b) show
the schematic diagram of the batch pyrolysis set-up
and a photograph of the experimental facility, respec-
tively, where a 6–8 g sample of each fuel was pyrolyzed

Table 1. The proximate and ash analysis results of the samples.
Coal (wt%) Algae (wt%)

Proximate analysis
Volatile matter (Vmd) 28.70 79.25
Fixed carbon (Cd) 57.50 7.69
Ash (Ad) 13.80 13.06

Ash analysis
SiO2 49.90 8.73
Fe2O3 4.40 2.88
CaO 1.78 9.42
MgO 0.72 6.47
SO3 0.77 18.80
P2O5 1.10 18.70
Na2O3 0.26 12.30
K2O 0.57 21.70
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in a fixed bed reactor equipped with alumina tube
inside and an electrical heater was used to heat the
reactor. A thermocouple was inserted into the heater to
touch the outer surface of the reactor. The term ‘reactor
temperature’ hereafter in this paper refers to the tem-
perature that was read by the thermocouple. Before
heating the set-up, the system was purged with nitro-
gen for 30 min to ensure an oxygen free environment
inside. The sample residence time was 30 min at the
final temperature of 1000 �C. Char was cooled to room
temperature before opening the reactor. Nitrogen flow
rate was kept constant at 200 mL/min during the pyrol-
ysis experiment.

Char gasification experiment

Char samples were crushed and sieved to a sample size
of less than 100 mm. The isothermal gasification experi-
ment was conducted by a thermogravimetric analyzer
(DTG-50, Shimadzu Inc.) in the temperature range of
800–950 �C for algae and in the range of 850–1000 �C
for the blend with 50 wt% algae and 900–1000 �C for
coal and blended samples with 30 wt% of algae. The
final char sample weight was kept around 4.7 § 0.2 mg
before injection of CO2. The CO2 flow rate was around
200 mL/min for all experiments. Crucible height was
kept as low as 2 mm to avoid the effect of the gas dif-
fusion over a high wall [26]. In order to ensure repro-
ducibility of data, each experiment was carried out at
least twice.

Methods of data analysis

Synergy analysis
TGA lists the sample weight values as a function of
time. The experimental conversion ratio (X) and the
gasification rate (R) were calculated according to Equa-
tions (1) and (2). The calculated conversion ratio (Xc)
which assumes there is no interaction between par-
ticles of coal char and algae char during co-gasification
can be calculated according to Equation (3) [27]. The

extent of the synergetic effect (Syn) can be evaluated
by finding the difference between the experimental
and calculated conversion ratios at the same tempera-
ture as shown in Equation (4) [28].

X D m0 �mt

m0 �m1
(1)

RD dX
dt

(2)

Xc D vc mc0 �mctð ÞC vbðmb0 �mbtÞ
vc mc0 �mc1ð ÞC vbðmb0 �mb1 Þ (3)

SynD X � Xc (4)

mc0, mct and mc1 represent the initial mass of coal
char, the instantaneous mass of coal char at time t and
the coal ash mass, respectively. mb0, mbt and mb1 rep-
resent the initial mass of algae char, the instantaneous
mass of algae char at time t and the algae ash mass,
respectively. vc and vb refer to the coal char mass frac-
tion and algae char mass fraction in the blend,
respectively.

Kinetic analysis
The change in the apparent reaction rate is generally
represented by Equation (5):

dX
dt

D k T ; PCO2ð Þf Xð Þ (5)

Assuming that the partial pressure of CO2 remains
constant during the gasification process, the reaction
rate (k) can be represented according to the Arrhenius
equation as:

kD A exp � E
RT

� �
(6)

A, R and E are the pre-exponential factor, the univer-
sal gas constant (8.314 J/mol K), and the activation
energy respectively. The function f Xð Þ has a structural
meaning and depends on the conversion. This function

Figure 1. (a) Scheme of the fixed bed reactor for char preparation. (b) Photograph of the fixed bed reactor for char preparation.
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can be expressed by many models which are based on
assumptions. In this study, the following models were
applied: the volumetric model (VM), the shrinking core
model (SCM), the random pore model (RPM) and the
modified random pore model (MRPM).

VM assumes homogenous reaction throughout the
volume of the reactant particle [29,30] and is given by
Equation (7):

dX
dt

D kVM 1� Xð Þ (7)

SCM assumes that the non-reacting core is at the
center and the reaction takes place on the surface and
gradually moves inside the particle [29,31–33].The
model is given by Equation (8):

dX
dt

D kSCMð1� XÞ23 (8)

Bhatia and Perlmutter proposed a complicated
model called the random pore model (RPM), which
incorporates the structural change during the gasifica-
tion process. The RPM is given by Equation (9) [34].
RPM assumes the surface area increases due to the
coalescence and overlapping of the pores. These
changes are expressed by the structural parameter C
which depends on the surface area, the pore length
and the solid porosity. Furthermore, the structural
parameter can be calculated by finding the maximum
conversion ratio XMAX which occurs when the reactivity
reaches its peak value as shown in Equation (10): [31].

dX
dt

D kRPM 1� Xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1�C Lnð1� XÞ

p
(9)

CD 2
2Ln 1� XMAXð ÞC 1

(10)

The RPM model can predict the gasification behav-
ior as long as the maximum gasification rate happens
at the conversion ratio X < 0.393. Accordingly, Zhang
et al. [35] proposed the modified random pore model
(MRPM) which is indicated in Equation (11):

dX
dt

D kRPM 1� Xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1�C Lnð1� XÞ

p
1C 1C cXð Þpð Þ

(11)

where p and c are dimensionless constants.

Table 2 summarizes the VM, SCM and RPM linear-
ized solutions and the related rearranged forms of con-
version equations.

Results and discussion

Sample characterization

The proximate and ash analysis results of both coal and
algae samples are shown in Table 1. The proximate
analysis was carried out by thermogravimetric analyzer
(DTG-50, Shimadzu Inc.). The ash composition was ana-
lyzed by CHN analyzer.

Algae specie has higher volatile matter content,
whereas coal has high fixed carbon content, which
makes it high-rank coal. The ash content is high in
both samples. However, the inorganic matter elements
in both samples are quite different from each other.
Alkali metals such as K and Ca are presented in a con-
siderable amount in algae and are expected to acceler-
ate the gasification rate by the catalytic action of char
[35]. The coal sample contains large amount of Si
which has been confirmed to have an inhibiting effect
on the gasification reactivity [36].

Co-gasification reactivity

Figure 2 shows the effect of the temperature on coal
char gasification. It is clear that increasing the tempera-
ture shorten the gasification time and this is an
expected result due to the fact that the Boudouard

Table 2. The models linearized solutions and the related rearranged forms.
Model Linearized solution Conversion equation

VM �Ln 1� Xð ÞD kVM t XD 1� expð�kVMtÞ
SCM 3 1� 1� Xð Þ13

h i
D kSCM t XD 1� 1� kSCMt

3

� �3
RPM 2

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�C Ln 1� Xð Þp � 1

� �D kRPM t XD 1� exp �kRPMt 1C CkRPMt
4

� �� �

Figure 2. Effect of temperature on Newlands coal char
gasification.
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reaction is an endothermic reaction. The conversion
increases linearly from the beginning of the reaction
until a conversion ratio of around 90% is reached. The
reaction then proceeds very slowly until completion
due to the collapsing of porous structure and the
increasing resistance of ash layer for the reactant gas
diffusion.

Figure 3 presents the carbon conversion ratio versus
time of the char samples of coal and algae at 900�C.
The time needed to reach the carbon conversion of
X D 0.80, which is our characteristic conversion in this
research, was about 12,000 seconds and 800 seconds
for coal and algae char samples, respectively. This
implies that the coal char gasification rate was 15 times
slower than the algae char gasification rate. These dif-
ferences could be attributed to the differences in alkali
earth metals presented in both samples. The Si com-
pound contained in the coal char have been confirmed
to have deactivation effects. Also the P compound was
reported to have similar deactivation effects like Si
[37]. Both compounds Si and P were contained in large
amounts in the coal sample. However, K compounds in
the algae char sample are around 38 times higher than
those in the coal char sample as shown in Table 1. One
of the main mechanisms through which potassium cat-
alyzes the reactivity of char gasification is to increase
the number of active sites which in turn increases the
oxygen concentration obtained from CO2 on the sur-
face of carbon [38]. Other factors like a larger surface
area, porosity and char preparation conditions may
have contributed to a higher algae char gasification
reactivity [39]. In light of the above, a considerable
enhancement of the coal–algae char blend gasification
reactivity is expected, especially if the algae char has
the ability to adhere to the surface of the coal char so
that the gasification of the coal char might be influ-
enced by the catalytic effect of the residual minerals
from the algae char after the algae char is gasified [39].

In this study, the co-gasification experiments were
carried out for the blending ratios of 50 and 30 wt% of
the algae char in order to investigate the effect of the
blending ratio on the co-gasification reactivity. Further-
more, to ensure a pure chemically controlled reaction
and to eliminate the pore diffusion effect on the evalu-
ation of the calculated conversion (Xc), the studied
temperature ranges were set: for coal (NC) (900–
1000�C), for algae (ALG) (800–950�C), for 50% blend
(ALG50-NC50) (850–1000�C), and for 30% algae blend
(ALG30-NC70) (900–1000�C). The theory behind the
selected temperature ranges will be explained in the
next section. Additionally, Kim et al. [40] confirmed
that mass transfer (gas diffusion), which includes both
the diffusion inside the coal char bed and inside the
pores of the single particle, is negligible and the reac-
tion is still chemically controlled if the maximum reac-
tion rate doesn’t exceed the value of 0.0082 s¡1.

Figure 4 presents the maximum reaction rate of gas-
ification which was always less than 0.004 s¡1 and the
algae char sample had a maximum reaction rate at
950�C. In this study, the agreement between the two
above-mentioned rules was adopted to decide the
studied temperature ranges where the reaction is con-
sidered chemically controlled.

Figure 5(a) shows the experimental conversion ratio
of the ALG50-NC50 blend at 900�C with the corre-
sponding calculated conversion ratio (Xc) which was
determined by Equation (3). Initially, the calculated
conversion ratio is larger than the experimental one
until a value around 0.44, indicating that an inhibiting
effect happened between the two chars and this may
be attributed to the intimate contact between the
algae char and the coal char. However, above the con-
version ratio of 0.44, the experimental conversion ratio
becomes larger than the calculated one, which implies
a synergetic effect occurs through the catalytic effect
of the alkali contents in algae ash on the coal char reac-
tivity. A similar behavior about co-gasification of coal
with terrestrial biomass has been reported by Ding
et al. [41]. The time required for ALG50-NC50 to reach
0.80 conversion ratio was around 2850 s based on the

Figure 3. Effect of char type on gasification at 900�C.

Figure 4. Comparison of the maximum reaction rate for the
studied samples.
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experimental run which is much shorter compared to
the calculated time of 9000 s for the same conversion
ratio. This means that an obvious catalytic effect hap-
pened which shortened the time to reach the conver-
sion ratio of 0.80 by a factor of nearly 3.

In order to investigate the effect of the temperature
on the reactivity behavior, gasification at 950�C was
studied and the results showed that the inhibiting
effect, which happened until X < 0.44, has been
reduced with the increase of the temperature as shown
in Figure 5(c) where the differences between the experi-
mental and the calculated conversion ratio become
smaller compared with the result shown in Figure 5(a).
Moreover, the catalytic effect resulted in the experimen-
tal conversion ratio to be four times larger than the cal-
culated one at the conversion ratio of 0.80. This may be
explained by assuming that the fusion and dissolution
of mineral matter in the algae char which catalyzes the
coal char must take place to a larger extent at higher
temperatures [42]. Figures 5(b) and (d) demonstrate the
influence of the mixing ratio on the behavior of the co-
gasification reactivity, where the ALG30-NC70 blend
shows two distinct differences from the ALG50-NC50
blend. Firstly, a slower response at both studied temper-
atures implies that the synergetic effect is reduced
when the blending ratio is reduced. Secondly, the
inhibiting effect extends until less than 0.30 conversion
ratio, beyond the conversion behavior is reversed and
the catalytic effects were observed.

Kinetic modeling

In order to explain the co-gasification reaction, the
data indicating the carbon conversion ratio from X D 0
to X D 0.80 was used. The reason behind this is that a
high conversion ratio, due to the collapsing of the
actual porous structure characteristics, makes the ash
layer resistance to dominate the process completion
[43]. The linearized solutions of the models of VM, SCM
and RPM were utilized to find the rate constant. MRPM
was used to replace RPM after it failed to be applied
for ALG samples since the conversion rate exhibits its
maximum value at the conversion ratio X � 0.393.
MRPM was fitted to the data using the free source soft-
ware SCILAB, on the basis of the nonlinear square
method, a Levenberg–Marquardt algorithm (LMA)
based function was applied to iterate the four-parame-
ter problem of ALG samples. For the application of
RPM, it was necessary to determine the pore structural
parameter (C). In this study, the determination of C
was carried out according to Equation (10).

Figure 6 illustrates the application of the studied
models used to fit the experimental data obtained at
different temperatures for all coal–algae mixing ratios.
Data analysis revealed that VM has the lowest values of
the coefficient of determination (R2) followed by results
of SCM. A better fitting can be observed for RPM and
MRPM with higher (R2) values which lead to conclude
the rate constant to be calculated by them. Table 3

Figure 5. Experimental and calculated conversions for co-gasification experiment (a), (b) at 900�C and (c), (d) at 950�C.
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Figure 6. Plots fitting of VM, SCM and RPM for (a) NC, (b) ALG30-NC70 and (c) ALG50-NC50 samples and VM, SCM and MRPM for
(d) ALG sample.

Table 3. Kinetic and empirical parameters summary of the applied models.
VM SCM RPM / MRPM

Sample T[�C] k[s¡1] R2 k[s¡1] R2 C c b k[s¡1] R2

ALG 800 0.00035 0.8534 0.00037 0.9073 5.69 2.718 1.053 0.00012 0.9974
850 0.0009 0.8979 0.00077 0.9406 16.27 3.779 4.853 0.0003 0.9176
900 0.00164 0.8639 0.00136 0.9160 87.42 2.391 2.086 0.00036 0.9921
950 0.0025 0.7525 0.0019 0.8000 1.34 19.03 1.310 0.0006 0.9920

NC 900 0.00011 0.9076 0.00009 0.9505 42.71 – – 0.00003 0.9966
950 0.00017 0.9243 0.00014 0.9638 17.59 – – 0.00006 0.9985
1000 0.00039 0.9267 0.00032 0.9647 14.44 – – 0.00015 0.9970

ALG50-NC50 850 0.00021 0.9568 0.00017 0.9847 7.76 – – 0.00011 0.9978
900 0.00052 0.9498 0.00042 0.9798 6.35 – – 0.00026 0.9957
950 0.00118 0.9250 0.00097 0.9600 12.51 – – 0.00047 0.9890
1000 0.00186 0.8214 0.00154 0.8785 28.50 – – 0.00064 0.9600

ALG30-NC70 900 0.00025 0.9386 0.00021 0.9725 4.43 – – 0.00014 0.9940
950 0.00085 0.9115 0.00069 0.9534 24.31 – – 0.00027 0.9957
1000 0.00141 0.8013 0.00116 0.8649 10.86 – – 0.00061 0.9515
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includes all fitting parameters and the coefficient of
determination (R2) for the applied models.

In order to calculate the kinetic parameters, the
Arrhenius law shown in Equation (6) was adopted. The
relationship between the absolute temperature’s recip-
rocal (1/T) and the logarithm of the rate constant (ln K)
was obtained for each model in the studied tempera-
ture range. A satisfactory linear relationship was
noticed as shown in Figure 7. However, no obvious
change in the line trend was observed in the studied
temperature range. Therefore, the char gasification
reaction is considered under the chemical reaction
control. On the basis of the slope and the intersections
values, the two kinetic parameters, the activation
energy (Ea) and the frequency factor (A), were obtained
for all studied models. These data are included in
Table 4.

As shown in Table 4, the activation energy, which
refers to the lowest temperature where the reaction can
begin, varied significantly for all coal–algae blends. The
coal sample exhibited the highest activation energy
value and this value decreased as the percentage of
algae increased in the blend. Thus, a catalytic effect was
confirmed in terms of the activation energy reduction.
Similar results were observed by other researchers for
co-gasification of coal and terrestrial biomass, for exam-
ple, Ding et al. [41] and Jeong et al. [7].

Conclusions

Co-gasification of coal char and microalgae char was
conducted in TGA under CO2 atmosphere. The syner-
getic effect was confirmed for all blends and the reac-
tion time shortened by a factor of nearly 3 times at
900�C and 4 times at 950�C as in 50 wt% of algae

blend, and it has been found that the synergetic effects
to decrease with the reduction of the algae weight
ratio as in 30 wt% of algae blend. The catalytic effect
may be attributed to the high potassium content in
algae char. Kinetics modeling were conducted for con-
version ratios between X D 0 and X D 0.80. RPM and
MRPM have R2 values around 0.99 for most cases
which are higher than other models. Consequently, the
kinetics parameters were calculated by them. The
modeling results established good information for gas-
ifier design purpose.

This work is the first step to understand the co-gasi-
fication process of coal–algae blends. In the next step:
a lab scale co-combustion experiment will be con-
ducted in order to investigate the effect on syngas
composition and tar formation.
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